Hence

$$r \leq \frac{AD \cdot AE}{AD + AE}$$

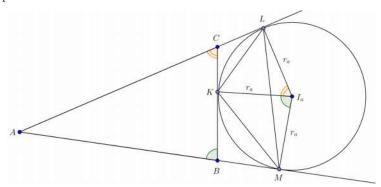
and the result follows immediately. The equality holds if and only if $\angle A$ is a right angle.

3808. Proposed by Mehmet Şahin.

Let ABC be a triangle with area Δ ; circumradius R; excadii r_a, r_b, r_c ; and excenters I_a, I_b, I_c . The excircle with centre I_a touches the sides of ABC at K, L, and M. Let Δ_1 represent the area of triangle KLM and let Δ_2 and Δ_3 be similarly defined. Prove that

$$\frac{\Delta_1 + \Delta_2 + \Delta_3}{\Delta} = \frac{r_a + r_b + r_c}{2R}.$$

Solved by A. Alt; M. Amengual Covas; Š. Arslanagić; M. Bataille; P. De; O. Geupel; J. Heuver; O. Kouba; S. Malikić; C.R. Pranesachar; C. Sánchez-Rubio; G. Tsapakidis; D. Văcaru; P. Y. Woo; T. Zvonaru; and the proposer. We present a composite of similar solutions by Arkady Alt, Miguel Amengual Covas, and Oliver Geupel.



We use the common notation

$$a = BC$$
, $b = CA$, $c = AB$, $2s = a + b + c$.

Since quadrilaterals MI_aKB , I_aLCK , and MI_aLA are cyclic, we have

$$\angle MI_aK = \angle B$$
, $\angle KI_aL = \angle C$, and $\angle MI_aL = \angle 180^\circ - \angle A$.

It follows that

$$\begin{split} \Delta_1 &= & [I_a K M] + [I_a L K] - [I_a L M] \\ &= & \frac{r_a^2}{2} (\sin B + \sin C - \sin(180^\circ - A)) \\ &= & \frac{r_a^2}{2} (\sin B + \sin C - \sin A) \\ &= & \frac{r_a^2}{2} \cdot \frac{b + c - a}{2R} = \frac{r_a}{2R} \cdot r_a (s - a) = \frac{r_a}{2R} \Delta. \end{split}$$

Copyright © Canadian Mathematical Society, 2015

Analogously,

$$\Delta_2 = \frac{r_b}{2R}\Delta, \quad \Delta_3 = \frac{r_c}{2R}\Delta,$$

hence the result.

3809. Proposed by Michel Bataille.

For positive real numbers x, y, let

$$G(x,y) = \sqrt{xy}, \quad A(x,y) = \frac{x+y}{2}, \quad Q(x,y) = \sqrt{\frac{x^2+y^2}{2}}.$$

Prove that

$$G(x^x, y^y) \ge (Q(x, y))^{A(x, y)}.$$

Solved by AN-anduud Problem Solving Group; R. Boukharfane; C. Curtis; P. Deiermann and H. Wang; O. Kouba; K. W. Lau; P. Perfetti; D. Smith; and the proposer. One incorrect solution was received. We present the solution by Paolo Perfetti.

The given inequality is equivalent to

$$x^{\frac{x}{2}}x^{\frac{y}{2}} \ge \left(\sqrt{\frac{x^2+y^2}{2}}\right)^{\frac{x+y}{2}} \iff x^{\frac{2x}{x+y}}y^{\frac{2y}{x+y}} \ge \frac{x^2+y^2}{2},$$

which upon being divided by x^2 becomes

$$\frac{y^{\frac{2y}{x+y}}}{x^{\frac{2y}{x+y}}} \ge \frac{1}{2} \left(1 + \left(\frac{y}{x} \right)^2 \right). \tag{1}$$

Without loss of generality, we assume that $x \leq y$. Let $t = \frac{y}{x}$. Then $t \geq 1$, $\frac{2y}{x+y} = \frac{2t}{1+t}$ and (1) becomes

$$t^{\frac{2t}{1+t}} \ge \frac{1+t^2}{2} \iff \frac{2t}{1+t} \ln t \ge \ln\left(\frac{1+t^2}{2}\right). \tag{2}$$

To prove (2), let $f(t) = \frac{2t}{1+t} \ln t - \ln \frac{1+t^2}{2}, t \ge 1$. Then by routine calculations, we find:

$$f'(t) = 2\left(\frac{1 - t^2 + (1 + t^2)\ln t}{(1 + t)^2(1 + t^2)}\right).$$

We claim that

$$1 - t^2 + (1 + t^2) \ln t \ge 0$$
 for all $t \ge 1$. (3)

Let
$$h(t) = \ln t - \frac{t^2 - 1}{1 + t^2} = \ln t - 1 + \frac{2}{1 + t^2}$$
. Then
$$h'(t) = \frac{1}{t} - \frac{4t}{(1 + t^2)^2} = \frac{(1 - t^2)^2}{t(1 + t^2)^2} \ge 0,$$

Crux Mathematicorum, Vol. 40(1), January 2014